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On the phenomenon of vortex street breakdown 

By WILLIAM W. DURGINT 
AND STURE K. F. KARLSSON 
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(Received 6 October 1970) 

A von K&rm&n vortex street generated in the usual way was subjected to a 
deceleration, thereby changing the ratio of longitudinal to lateral spacing be- 
tween the vortices. Distortion of the individual vortices followed which resulted 
in annihilation of concentrated vortex regions and creation of a stationary wake 
flow. This wake flow was itself dynamically unstable and developed into a 
new vortex street ofa  different frequency from the initial one. The breakdown 
of the initial vortex street is qualitatively explained by considering the convec- 
tion of a concentrated vortex region due to the motion imposed by all the other 
vortices. 

Introduction 
For nearly a century the von KkmBn vortex street has been the subject of 

many experimental and theoretical investigations. Seemingly basic to the study 
of time-dependent flows because of its simple periodicity, the vortex street 
has, nevertheless, evaded all but the most rudimentary of mathematical de- 
scriptions. Being relatively unguided by theory, experimentalists have, for the 
most part, always made the same type of measurements, namely of velocity and 
geometry in a plane through the vortex filaments. 

Classically the vortex street has been divided into three regions (cf. Schaefer & 
Eskinazi 1959): the formation, a stable, and an unstable region. The forma- 
tion region has been synthesized utilizing numerical integrations on a digital 
computer (Payne 1958). The stable region was originally described by von 
Kkmiin (von Kkrniin & Rubach 1912) and more recently by Schaefer & 
Eskinazi. The unstable region was thought to precede turbulence or accomplish 
the viscous annihilation of the vortex street. 

In 1959 Taneda found an alternative development for the vortex street. He 
discovered that far downstream the original vortex street disappeared and a 
new one of larger scale appearred. That he was the first to observe this phenomenon 
is not surprising since his apparatus was unique in being able to preserve thevortex 
trail for long distances. Credibility was lent to Taneda’s observations by Zdrav- 
kovich (1968) who photographed the vortex trails of three cylinders in close 
proximity. For certain spacings of the cylinders the centre four vortex rows 
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annihilated each other leaving the two outside rows which quickly changed to 
the lower frequency, larger scale vortex street observed by Taneda. Still another 
situation which produces essentially the same phenomenon was observed by 
Karlsson (unpublished report). In  this case the vortices shed from a circular 
cylinder are convected into the region of deceleration in front of a larger circular 
cylinder placed perpendicular to  the first cylinder and the flow. Somewhere 
in the region between the cylinders a similar change of scale is observed. The 
present study utilizes this geometry. 

Experimental apparatus and instrumentation 
Two different low-speed wind tunnels were used in the course of the experi- 

mental work, both having rectangular cross-section test sections measuring 
10 in. by 15 in. and 22 in. by 32 in. respectively. These tunnels have recently been 
described by Sadeh, Sutera & Maeder (1968) and Wood (1969). 

:st 
section 

FIGURE 1. Geometrical arrangement in test section. 

In  the smaller of the two wind tunnels we studied a vortex street approaching 
the forward stagnation point of a 1.5 in. diameter circular cylinder, and the corre- 
sponding large cylinder in the large wind tunnel was 4.5 in. in diameter. Figure 1 
illustrates the experimental arrangement. 

All velocity measurements were made using the anemometer systems de- 
scribed in Sadeh et al. and Wood operated in the constant-temperature mode. 
Preliminary experiments showed that a probe with long thin support needles 
oriented across-stream was the only type which did not affect the flow field of 
interest significantly and was used exclusively in the final measurements. 
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One hot wire was supported on a traversing device, mounted external to the 
test section, which allowed continuous displacement along each one of the three 
co-ordinate axes. The hot wire was always oriented parallel to the shedding 
cylinder. A two-dimensional lathe compound (oriented horizontally) was mounted 
on the opposite side of the test section to hold the reference hot-wire probe. 

The flow field 
The flow in the wake of the shedding cylinder can be divided into three distinct 

regions, each of which will be discussed separately. The following observations 
were made in the plane of symmetry of the flow around the large cylinder. 

Within a range of free-stream velocities the wake immediately behind the 
shedding cylinder exhibited a periodic structure. Near the outside of the wake a 
single frequency sinusoidal wave was observed on the oscilloscope representing 
velocity fluctuations due to convected vortices on that side of the wake. As the 
probe was moved in towards the centre of the wake the measured velocity 
fluctuations had a dominant second harmonic component. The observed wave- 
forms were characteristic of the von KArmAn vortex street which exists in free 
wake flow behind a cylinder approximately between Reynolds numbers of 50 
and 300 and were extensively studied by Kovasznay (1949) and Roshko (1953). 
However, as the probe was moved downstream, the fluctuations grew smaller, 
finally becoming undetectable. We have called this region of the flow field the 
calm region. Here no velocity fluctuations were visible. The mean velocity, 
however, showed a large deficit across the wake. The length of this calm region 
downstream was characteristically an inch at  most and practically non-existent 
at least. 

The end of the calm region was signalled by the development of a growing 
instability and the formation of a new vortex street of muoh larger width and 
wavelength than the original. Figure 2 (plate 1)  shows the velocity fluctuations 
as a function of time in this wake. For reference the upper trace shows the velocity 
fluctuations in the original vortex street close to the shedding cylinder. Further 
downstream, but outside the boundary layer of the large cylinder (charac- 
teristically 0.03 in. thick), this second vortex street disappeared, leaving some 
low frequency fluctuations. 

A wave analyzer was used to determine the frequency content of the hot-wire 
signal, and the fundamental was acourately debermined by comparison with a. 
frequency standard. Second and third harmonics of the fundamental were 
especially prominant immediately behind the shedding cylinder. 

A comparison between the two simultaneously existing vortex streets is shown 
in figure 3 in which the non-dimensional primary street frequency f @ / v  is plotted 
against the non-dimensional secondary street frequency ad2/v where d is bhe 
shedding cylinder diameter and v the kinematic viscosity. As noted on the figure 
some of the data is from the small wind tunnel which has a higher free-stream 
turbulence level than the large tunnel. 
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d= 0.029 

D=4.5. large tunnel 0 

fd"v 

FIUURE 3. Secondary wake frequency va. primary wake frequency. 

Velocity profiles 
The wake profile measurements were made in the large wind tunnel, thus the 

large cylinder had a diameter of 4-5in. The shedding cylinder was 0.029in. in 
diameter and the distance between the cylinders was 1.8in. The free-stream 
velocity was 15.9 ftlsec, the shedding frequency 700 Hz, and the air temperature 
75 O F .  

The mean velocity U and the normalized r.m.s. fluctuations of the velocity, 
( (u2)*/U),  were measured in the plane of symmetry of the large cylinder using 
standard hot-wire techniques. Velocity measurements were made every 0.001 in. 
in the cross-wake (y) direction and every 0.05 in. in the downstream (2) direction 
in the primary vortex street, increasing to every 0.1 in. in the calm and secondary 
street regions. The wake was found to be symmetrical, therefore, the measure- 
ments were limited to one side. 

Figure 4 shows the meanvelocity plotted against y for each downstream station. 
The heavy curve at x = 0.85 in. marks the disappearance of the primary vortex 
street as indicated by the fluctuation measurements. The second heavy curve at 
x = 1-25 in. marks the appearance of the secondary vortex shreet. These profiles 
can be seen to drop from some value outside the wake to a minimum on the wake 
centreline where the slope must be zero if the wake is symmetrical. The velocity 

- 
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FIGURE 4. Transverse profiles of mean velocity in the wake. 

defect U, - U, where U, is the mean velocity outside the wake, is seen to increase 
with downstream distance x for all cross-wake locations up to, approximately, 
the centre of the calm region. In  other words, the mean deficit velocity gradient 
in the x direction, a(U, - U)/8x  is negative. Vortex streets in uniform flow exhibit 
positive values of this gradient (Schaefer & Eskinazi 1959). 

Figure 5 shows the mean velocity plotted against downstream distance for 
three cross-wake locations. The upper curve represents the velocity outside the 
wake. The broken curve represents the theoretical velocity distribution along the 
stagnation streamline in front of a circular cylinder in an unbounded inviscid 
fluid. The lower curve represents the velocity along the wake centreline, U,. The 
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2 

velocity defect is very apparent here. The remaining curve shows similar varia- 
tion at  an intermediate position. A recovery in deficit velocity can be seen after 
the calm region. The foremost part of the large cylinder lies at  x = 1.8 in. 

- - 700 Hz - region "Irn 250 Hz +.- 

0 0.2 0.4 0.6 0.8 1 .o 1.2 1.4 1.6 
x [in.] 

FIGURE 5. Longitudinal profiles of mean velocity in the wake. 0, y = 0; 
A, ?J = 0.25; 0, y = 0.075; --- , potential flow. 

Figure 6 shows (zc")* plotted against y for sequential downstream locations. 
The slope of these curves is zero at the centreline, as it was for the mean velocity 
curves, because of the wake symmetry. The value is a minimum at the centreline 
increasing at first with y until a maximum is achieved whereupon it begins to 
fall steadily to the value prevailing outside the wake. The maximum value as 
well as the area enclosed by these curves is seen to fall steadily with distance 
downstream until the formation of the new street at x = 1-25in. where (2)J 
increases sharply. In  this secondary street region there is at 6.1~5 a maximum on 
the centreline. Further downstream a minimum forms on the centreline with the 
maximum moving off-centre as in the primary street region. 

The centreline minimum and off-centre maximum are characteristic (Schaefer 
& Eskinazi 1959, Kovasznay 1949, Roshko 1953) of vortex streets in uniform 
flow as is the decay in the maximum value and area enclosed by the curves. The 
mean vorticity in the wake also is strongly affected. Although not directly 
measured we can obtain a fairly good estimate for it from our velocity measure- 
ments. The mean vorticity is given by 

(1) 
- 
w = aqax - aqay,  

where 72 and V are the mean velocities in the x and y directions respectively. It 
is easy to demonstrate from our measurements that laZ/azl < Iaii/ayI in the wake. 
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Typically lV/Ul 21 0.03, I(aG/ax)/(aU/ay)l 21 0-01. Hence it is justified to assume 
that 

w - auiay. (2) 

Figure 7 shows --is computed in this fashion from figure 4 plotted against y 
for the same downstream locations as used in figure 6. The amplitude as well as 
the area under the curves is seen to increase with downstream distance until the 
beginning of the calm region where the amplitude levels out somewhat and then 
diminishes in the secondary street region. The net mean vorticity grows as the 
net r.m.s. velocity falls in the primary wake region. The large velocity deficits 
observed in figure 5 are associated with maximum values of mean vorticity. 

Geometrical structure of the vortex motion 
The curvature, or longitudinal shape, of the vortex filaments was determined 

by correlating Che hot-wire signal with a reference hot-wire signal from a probe 
located lin. above the stagnation plane a t  x = Oelin. and y = -0.08in. As the 
hot-wire probe was moved downstream the correlation was periodic; a maximum 
when the signals were in phase, a minimum when 180" out of phase and zero a t  
? 90" phase angle. Thus the zero correlation points provide a convenient map of 
the vortex positions. 

Figure 8 shows the downstream locations of zero correlations in the plane 
y = 0.04 in. at  various distances from the plane of symmetry ( x  = 0). The curves 
connecting these points represent vortex filaments. 

It is evident that any given vortex is not shed all at once from the shedding 
cylinder but rather begins somewhere outside Che stagnation region and 'peels 
off' the cylinder towards the plane of symmetry. The filaments then bend around 
the large cylinder and get closer together as they travel downstream. In  the 
secondary street region, correlations were only measured in the plane of sym- 
metry of the large cylinder ( z  = 0). Here also the vortices grow closer together 
as they travel downstream. 

In the primary vortex street region, in the plane y = 0-055 in., the downstream 
location, x, of the vortices a t  a given instant of time was measured. The difference 
between successive locations was taken to be the downstream spacing, a, at the 
downstream location given by the mean of the successive in-phase locations. These 
values are plotted in figure 9. Values of the downstream spacing, a, used in 
subsequent calculations were taken from this figure. Approximately a 60 yo 
decrease in downstream spacing is observed between the initial value of 0.129 
and the value just as the primary vortex street disappears. As was previously 
noted, this behaviour deviates considerably from that of a vortex street in a 
uniform flow which exhibits a relatively constant value in downstream spacing 
(Schaefer &, Eskinazi 1959). 

Early measurements of the distance between the rows of vortices (lateral 
spacing) were made using photographs of particle or dye trails in the vortex 
street. Any point about which the fluid appeared to rotate was taken as a vortex 
centre and spacing measured from it. Hooker (1936) pointed out that these 

33 F L M  48 
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points differed from the point of maximum vorticity or actual vortex centre 
because of the diffusion of vorticity. He showed how to correct for this error by 
estimating the age, r ,  of the vortices and assuming them to diffuse in the Hamel- 
Oseen fashion, (cf. equation (3)). 

x [in.] 

FIGURE 8. Correlation zeros. 

x [in.] 

FIGURE 9. Downstream spacing. 

Schaefer & Eskinazi adapted essentially the same method for use with hot- 
wire anemometry. They assumed the vortices to be of the Hamel-Oseen type 
whence the maximum peripheral velocity is at a distance of r* = ( 5 . 0 4 ~ ~ ) 4  from 
the vortex centre. Using the additional assumption that the maximum in the 
cross-wake plot of r.m.s. velocity coincides with the outside maximum peripheral 
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velocity, they calculated the lateral spacing of the vortex rows as h = h, - 2r, 
where h, is the distance between the r.m.s. velocity peaks. Although Schaefer & 
Eskinazi obtained good theoretical and experimental agreement, thereby 
justifying their assumptions, the vortices in the present case are (as will be shown) 
not circular and therefore the applicability here of the above method is question- 
able. 

A reasonable assumption here is that the across-wake location, h,, of the 
vortex centres coincides with the maximum in the mean vorticity. Using the 
approximation G z - aii/ay, this centre is also the maximum slope of the across- 
wake mean velocity plots. An examination of Schaefer & Eskinazi’s data did 
indeed show that for their vortex street the across-wake distance between the 
maximum slopes of their mean velocity plots, h,, was identical to their computed 
values of h. 

x [in.] 

FIUURE 10. Spacing ratios. 

Figure 10 is a comparison between the different cross-wake spacings h,, h,, 
and h as functions of 2, all normalized by the local downstream spacing ratio a. 
For comparison, von KkmLn’s value of 0-281 is also shown. Figure 11 shows 
7 = 7(2) obtained from the measurements by noting that a vortex took 1/700sec 
to traverse a vortex spacing given by figure 9. 

Whereas the data of Schaefer & Eskinazi show hula and h/a to be coincident, 
figure 10 reveals that, for the present case, there is a marked difference. The 
across-wake spacing ratio based on mean vorticity maxima, hJa, is always 
substantially greater than that calculated from the spacing of r.m.s. velocity 
maxima and vortex age, h/a, indicating a reduction in the lateral diffusion of 
vorticit y . 

The phase of the hot-wire signal relative to the reference signal was measured 
from photographs of oscilloscope traces representing the velocity fluctuations 
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and the reference signal. These measurements were made at  several across-wake 
locations for various downstream locations. Figure 12 shows the phase angle 
plottedversus y for fixed values of x, the downstream stations. The inside of a 
vortex, i.e. the part nearest y = 0, is seen to lag the outer part for all but one 
curve. This lag becomes especially pronounced, almost a full cycle, just prior 
to the calm region. The missing points of the last two frames correspond to weak 
signals whose phase could not be reliably determined. 

Y -  

0 0.2 0.4 0.6 0.8 1 .o 
z [in.] 

FIGURE 11. Vortex age. 

Figure 13 shows wave analyses of the hot-wire signal at various downstream 
positions along the wake centreline. The band pass of the wave analyzer was 

octave and the vertical axis represents (u")*. The data was taken in the small 
wind tunnel using a cylinder separation of 1.2 in. and a primary wake frequency 
of 670 Hz. The curve a t  x = 0.24 in. shows a peak a t  the primary frequency and 
lesser peaks a t  the first and second harmonics. The curve at  x = 0.4 shows peaks 
a t  the fundamental and first harmonic only. These locations were in the primary 
vortex street region. At x = 0.6 and 0.7in. an entirely different spectrum is 
present; this is the secondary vortex street region. The fundamental of 240 Hz 
presents the largest peak and first and second harmonics are visible. At any 
station, if the probe was moved away from the centreline, the harmonics would 
quickly disappear and the fundamental gradually die in amplitude, 
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FIGURE 12. Relative phase angle of velocity fluctuations. 
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FIGTJRE 13. Wave analysis along the wake centreline. 
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Other relevant experiments 
Two experimental investigations into vortex street breakdown by Taneda 

(1959) and Zdravkovich (1968) are of particular interest in connexion with the 
present work. 

Using a glass-sided towing tank Taneda was able to observe the wakes behind 
towed cylinders and plates for very long distances via the aluminium dust, side 
slit lighting technique. His improved experimental techniques allowed much 
more extended observations of the vortex street development than had been 
possible in earlier wind-tunnel investigations where typically the free-stream 
velocity fluctuations due to background turbulence were comparable in magni- 
tude to fluctuations in the vortex street at 30 diameters downstream from the 
shedding cylinder, effectively terminating the study of further vortex street 
development. 

For Reynolds numbers less than 150, Taneda found the primary vortex street 
lasted for about 50 cylinder diameters before breaking down. The secondary 
vortex street formed slowly, reaching full development about lo3 diameters 
downstream. He found the secondary vortex street wavelength to be between 
1.8 and 3.3 times the primary wavelength. For Reynolds numbers greater than 
150 he found that the vortex street breaks down to turbulence and then forms 
a secondary vortex street with about 10 times larger wavelength than the 
primary one. In  a more recent investigation Taneda (1965) has found that the 
turbulent wake rkgime behind a flat plate also shows a strong tendency to become 
unstable and form a vortex street. 

Taneda also found that the secondary vortex street either broke down forming 
a third vortex street or died out through viscous diffusion. 

Zdravkovich qualitatively studied the wake of a group of three cylinders 
using smoke to make the wake visible in a vertical wind tunnel. By careful 
positioning of the three cylinders he was able to generate single vortex streets 
with characteristically large spacing ratios (e.g. 0-67 for one experiment). From 
his photographs it can be seen that the vortices of this vortex street continually 
deform; the outside of a vortex appears to advance and the inside slows down 
relative to the ‘vortex centre’. The vortices thus become somewhat oval in 
shape finally aligning themselves with the mean flow direction and become in- 
distinguishable. Sinusoidal oscillations are then seen to arise and develop into 

x in phase (in.) a spacing (in.) z location of a (in.) 

0.123 
0.252 
0.381 
0.509 
0.627 
0.730 
0.816 

0.129 
0.129 
0.128 
0.118 
0.103 
0.086 

0.118 
0.316 
0-445 
0.568 
0.678 
0-773 

TABLE 1 
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a new vortex street of larger wavelength than the original. The wavelength ratio 
is usually about 2 to 1. 

The relatively large spacing ratio is the only obvious difference between the 
vortex street behind three cylinders and that behind a single cylinder. This 
apparently governs in some way the deformation of each vortex from its usually 
circular shape to one conducive to the conditions which precede the formation 
of the secondary vortex street. 

Discussion 
There are essentially three differences between the flow field associated with 

the vortex street breakdown in the present case and the flow field surrounding 
the vortex street behind a cylinder in an unbounded fluid. First, the vortex 
filaments curve about the large cylinder as shown in figure 8. Secondly, by virtue 
of the mean flow around the large cylinder, the vortex filaments are stretched. 
Thirdly, the vortices grow closer together (in the downstream direction) as they 
travel downstream because the mean flow is slowing as shown in figures 8 and 9. 
Neither Taneda’s nor Zdravkovich’s experiments apparently involved bending 
or stretching of the vortex filaments on any appreciable scale yet they show 
behaviour similar to that observed here. The unique feature of the latter’s 
experiment was, however, the large spacing ratio the primary vortex street was 
forced to have because of the method of its generation. On the basis of these 
experiments, bending and stretching will be tentatively ruled out as possible 
primary causes of vortex street breakdown, and a mechanism to describe the 
breakdown process sought, which is two-dimensional in nature and depends 
strongly on the spacing ratio of the primary vortex street. 

Taking the same point of view as von Kkm&n (and, of course, others later) 
and letting the flow in the vortex street be given by the vortices in type and 
position, we see that any one vortex can be deformed by the combined action of 
all the others. It is thus appropriate to examine, in some detail, the convection 
of one selected vortex by all the other vortices. 

Shortly after formation close to the shedding cylinder a vortex in the primary 
vortex street is a highly concentrated distribution of vorticity about some point 
called the vortex centre. If, initially, the vorticity is all concentrated into an 
infinitesimal filament of circulation I’ (potential vortex), and the field is un- 
bounded, the ensuing diffusion of vorticity is given by the Hamel-Oseen solution 

where r2 = x2 + y2 and the co-ordinate system is fixed in the centre of the vortex. 
In  this solution the vorticity diffuses radially outward from the vortex centre 
creating a ‘diffuse’ vortex or patch of vorticity. 

At distances r 9 ( Y T ) ~  from the centre of a Hamel-Oseen vortex, it is identical 
to a potential vortex. In  fact, a circle with the radius r = r* = (5.04vr)4, the 
radius of maximum induced peripheral velocity, includes approximately 70 % 
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of the vorticity associated with the vortex. Providing none of the vortices 
'overlap', that is ( & ~ ) ~ + h ~  > 4 r i  and a > 2r, where h is used for the distance 
between rows since there is no ambiguity here, we may say that to a good approxi- 
mation all the vortices look like potential vortices to the one under consideration. 
Further assuming a constant downstream spacing, a, and across-wake spacing, 
h, it can be shown (Durgin 1970) that the initially circular cross-section of the 

s x 

r 

(n) u > O  (b)  uc0 

FIGURE 14. Modes of vortex straining. 

vortex region is in general convected into an elliptic shape. More precisely, a 
circle about (0,O) given by 

( 4 )  C(Z, y, t = 0) = ( Z / R ) 2 +  (y /R)2 = 1, 

is, to second order of approximation, deformed into 

C(z, y, t )  = ( Z / B ) ~  cosh (2a t )  - 2 ( z y / R 2 )  sinh (2at) + ( Y / R ) ~  cosh ( 2 4  = 1 .  ( 5 )  

This is the equation of an ellipse which upon rotation of the co-ordinate 
system by 45" to the principal axes becomes 

C ( X ,  Y ,  t )  = (X/Reat)2 + ( Y/Re-at)2 = 1. (6) 

If a = 0 the curve C remains circular. If a > 0 the original circle deforms with 
time as shown in figure 14 (a). The major axis of the ellipse lies on the X axis while 
the minor lies on the Y axis. If a < 0 the reverse situation is true as shown in 
figure 14@) with the major axis of the ellipse on the Y axis and the minor axis 
on the X axis. 

The parameter a is a function of the vortex spacing ratio which has been 
plotted in figure 15 in terms of 2na2a/I' us. h/a. It can be seen that a > 0 if 
h/a < 0-366 and a < 0 if h/a > 0.366.! Thus the fluid near the centre of any 
vortex can be strained into two possible modes depending on the values of the 
spacing ratio. 

As soon as a vortex deviates from its idealized circular shape its shape can be 
further changed by its own induced velocities. For the purpose of finding the 
self-induced motion of the elliptically deformed vortex it is convenient to assume 
that all the vorticity associated with the vortex is initially uniformly distributed 
within a specified radius, say r * .  This uniform vorticity is given by 

w = r/n& 
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and the ellipse bounding the ensuing strained vortex by equation (6) with r* 
replacing R. The principal axes of the ellipse have lengths 

c = r* eat, b = r* e-at. (7) 

The area of the ellipse, neb, is conserved so that within this approximation the 
uniform distribution of vorticity is maintained. 

A uniform elliptical vorticity distribution in an ideal fluid rotates with angular 
velocity (Lamb 1945, p. 232) 

Thus the elliptical vorticity distribution rotates, because of its self-induction, 
in the same sense as its circulation with the rotation rate decreasing as the 
deformation increases. 

n = [cb/(c  + b)2]  w.  (8) 

- 0  0.10 0.20 0.30 0.40 0.50 

hla 
FIUTJRE 15. The function 2na2a/r w. hja. 

As soon as a, vorticity distribution is strained by a finite amount by the velocities 
the other vortices induce, and consequently rotated by its own induced velocities, 
the problem of finding the motion of the deformed vortex is no longer separable 
and the foregoing analysis is not strictly valid for the subsequent motion. It is 
clear, however, that the same processes of deformation and rotation continue and 
qualitatively some insight may be gained by imagining that the processes are 
discrete. 

Comparison with experiment 
The phenomenon observed in the experiments occurred at spacing ratios larger 

than 0-366 and thus in the a < 0 regime in which, according to the simple model, 
the part of a vortex outside of the vortex street leads the inside part in the down- 
stream direction. This mode is in agreement with the observed across-wake phase 
variations (figure 12). 
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At x = 0.65 (just preceding serious phase shifts) the downstream spacing 
a = 0.107 in. and the spacing ratio hula = 0.4 which will be taken to be h/a for 
the purpose of this comparison. The circulation around any vortex is given by 

providing the vortices do not overlap and the integration is only carried out over 
the vorticity belonging to the vortex under consideration. Neglecting diffusion 
in the downstream direction the mean vorticity flux per unit depth through a 
plane, x = const. from y = - i h  to co (here - i h  is the wake centreline) is then 
f I? where f is the frequency at which vortices pass a fixed x. But the mean vorticity 
flux may also be written 

The integrand may be expanded to read 

Neglecting E(&/ax) and ut(avt/ax) in comparison with the other terms the circula- 
tion becomes 

Substituting the appropriate values for x = 0.65in. from figures 4 and 6 and 
f = 700Hz the circulation around a vortex at  x = 0.65in. is r = 9.9in.2/sec. 
From figure 11 the vortex age is found, whence r* = 0.03in. From figure 15 
27~a~a/I' = 0.56, when a = 76. Using t = 1/700sec in equation (7) 

c/r* = 1-12, blr, = 0.89 

in one cycle. From equation (8) the corresponding rotation rate becomes 
n = 86lrad/sec or in terms of rotation, 8, the ellipse would rotate 8 = 70" in 
one cycle. Evidently, khis estimate is too large, because rotation of this magnitude 
does not occur in the experiment. Clearly, simple superposition of the two 
mechanisms at work here is not valid for that large deformations. 

Limitation on the extent of rotation in the present model can be explained 
by noting that as a strained vortex rotates its extremes enter regions of large 
velocities induced by its neighbours of the same row which are undergoing 
similar processes. These velocities counteract the self-induced rotation of the 
deformed vortex. As the vortices rotate, they assume some alignment in the 
downstream direction whereupon the character of the convection has changed 
drastically. This alignment causes the vortices to become indistinguishable from 
one another and, in essence, a shear layer is formed in each row. These shear 
layers would correspond to what has previously been called the calm region. 
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Stability of the calm region 
An examination of the mean velocity profiles, figure 4, and the mean vorticity 

profiles, figure 7, reveals that the calm region consists of two adjacent layers of 
vorticity of opposite signs. These profiles are reminiscent of the laminar wake 
formed behind a flat plate in a uniform stream. The stability of this type of 
flow to sinusoidal perturbations in x and t has been studied by Sat0 & Kuriki 
(1961). Although their analysis was developed for uniform external flow it is 
interesting, nevertheless, for the purpose of a rough comparison, to apply the 
results to the present case, overlooking for the moment this obvious difference. 
Figure 16 shows the mean velocity a t  z = 0.85 and 0.95in. for the present case 
compared to their velocity distribution. The agreement is reasonably good but 
(Uo- V,)/Uo = 0.609 for the present case as compared to 0.692 for Sato & Kuriki. 
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FIGURE 16. Non-dimensional velocity distribution in the calm region. 
0 , ~  = 0.85; A, 0.95. 

Computing the frequency of the most amplified scale from the results of 
Sat0 & Kuriki, it is found that 5 = 465Hz for x = 0-85 and 5 = 426Hz for 
z = 0-95. These values are somewhat higher than the 250 Hz found experimen- 
tally. It should be noted that Sat0 & Kuriki found good agreement with their 
experimental values for Reynolds numbers based on the wake halfwidth, b, above 
500. The same Reynolds number for the present case was about 100. This 
relatively low value of the Reynolds number indicates that perhaps viscous 
effects are not completely negligible. Undoubtedly more important, but presently 
unknown, is the influence of the decelerating external flow on the frequency. 
The analysis does, however, predict a considerably lower frequency than the 
700 Hz primary wake frequency. 

Conclusions 
Throughout this study of vortex street breakdown we have taken the point 

of view that a certain distribution of vortices determines the velocity field of 
the wake. This idea was originated by von Kkmiin in his original summation 
of velocities induced by potential vortices. In  the case of vortex street break- 
down, we have found that it is necessary to extend the above approach by 
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considering, in some detail, the convective processes acting on any given vortex. 

The phenomenon of vortex street breakdown is characterized by the dis- 
appearance of a vortex street into a region where no significant velocity fluctua- 
tions are observed. This region, in turn, gives rise to another vortex street of 
larger scale and lower frequency than the original one. The detailed experimental 
findings suggest and are explained by a model in which a local concentration of 
vorticity, or vortex, is strained or convected by the other vortices of the street 
to an elliptical shape. This distorted vortex then rotates in the proper direction, 
through its self-induced velocities, approaching alignment of its major axis in 
the downstream direction. Because these processes take place as the vortices are 
travelling downstream, a region is reached where they touch or overlap to the 
extent they become shear layers on either side of the wake. These shear layers 
are then unstable and give rise to the secondary vortex street. 

The convection of vorticity within a vortex by the other vortices of the street 
initiates the phenomenon. A spacing ratio greater than 0.366 is indicative of the 
straining of the vortices in the proper direction for the calm region to be formed. 
The reverse situation of straining such that the velocity fluctuations outside the 
street lag those inside (h/a < 0.366) has, apparently, not been observed by other 
investigators and deserves further investigation. 

It is interesting to speculate that similar processes may be present in turbulent 
fiows. If small vortices making up a turbulent flow are subjected to  the proper 
straining by other vortices a regrouping of vortices to a larger scale and hence 
lower frequency might occur. 
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FIGURE 2. Primary and secondary vortex streets. 
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